Anti-Invariant Lorentzian Submersions From Lorentzian Concircular Structure Manifolds

نویسندگان

چکیده

This research article attempts to investigate anti-invariant Lorentzian submersions and the Lagrangian (LLS) from concircular structure [in short (LCS) n ] manifolds onto semi-Riemannian with relevant non-trivial examples. It is shown that horizontal distributions of such are not integrable their fibers totally geodesic. As a result, they can be geodesic maps. Anti-invariant also explored for harmonicity. We illustrate if Reeb vector field horizontal, LLS harmonic.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On $(epsilon)$ - Lorentzian para-Sasakian Manifolds

The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.

متن کامل

Statistical Lorentzian geometry and the closeness of Lorentzian manifolds

I introduce a closeness function between causal Lorentzian geometries of finite volume and arbitrary underlying topology. The construction uses the fact that some information on the manifolds and metrics is encoded in the partial order that the causal structure of each metric induces among points randomly scattered in the corresponding manifold with uniform, finite density according to the volu...

متن کامل

Holonomy groups of Lorentzian manifolds

In this paper, a survey of the recent results about the classification of the connected holonomy groups of the Lorentzian manifolds is given. A simplification of the construction of the Lorentzian metrics with all possible connected holonomy groups is obtained. As the applications, the Einstein equation, Lorentzian manifolds with parallel and recurrent spinor fields, conformally flat Walker met...

متن کامل

Geometric symmetries on Lorentzian manifolds

Lie derivatives of various geometrical and physical quantities define symmetries and conformal symmetries in general relativity. Thus we obtain motions, collineations, conformal motions and conformal collineations. These symmetries are used not only to find new solutions of Einstein’s field equations but to classify the spaces also. Different classification schemes are presented here. Relations...

متن کامل

Second-Order Symmetric Lorentzian Manifolds

Spacetimes with vanishing second covariant derivative of the Riemann tensor are studied. Their existence, classification and explicit local expression are considered. Related issues and open questions are briefly commented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Physics

سال: 2022

ISSN: ['2296-424X']

DOI: https://doi.org/10.3389/fphy.2022.812190